Какие бывают кулеры для компьютера? cloud-script.ru

Какие бывают кулеры для компьютера?

Типы и виды вентиляторов для пк Типы подшипников Отличия 3pin от 4pin

Размеры вентиляторов для пк


Размер или диаметр вентилятора измеряется в миллиметрах, например, 120, 140, 92, 90, 80, 40, 50, 60, 200мм.
Толщина обычно составляет от 15 до 40мм.

Крепление вентилятора для пк

В большинстве случаем, корпусные вентиляторы для пк, крепятся на винты, выполненные из какого-либо металла.

К некоторым моделям прилагаются, резиновые, силиконовые или иные крепления, позволяющие снизить вибрацию и уровень шума.

К радиатору кулера вентиляторы крепятся, чаше всего с помощью прижимных рамок или винтов.

Типы и виды подшипников в вентиляторах для пк


Тип подшипника в вентиляторе влияет на его характеристики и долговечность.

Подшипники, применяемые в вентиляторах для пк, можно разделить на два типа: скольжения и качения, по принципу работы.

Около наименования, располагаться цифры, обозначающие примерно возможное время наработки подшипника на отказ, при идеальных условиях.

Подшипники скольжения

Скольжения, простой (sleeve bearing) до 35 т. ч.
Один из самых конструктивно простых подшипников скольжения. Состоит из втулки и вала. Быстрее прочих приходит в негодность из-за большого трения деталей.

Ресурс работы напрямую зависит от вибрационных нагрузок и температурного режима. Издаваемый шум невысокий, но из-за быстрого износа, может достигать неприятных для слуха значений.

Гидродинамический (FDB bearing) до 80 т ч
Улучшенный вариант простого. Пространство между втулкой и валом заполнено смазкой, минимизирующий трение, благодаря чему срок службы значительно увеличивается и снижается уровень шума.

Масляного давления (SSO) до 160 т ч
Отличается от предыдущего магнитом, центрирующим вал, благодаря которому снижается износ, увеличен объем смазки, следствие чего более долговечен и тих.

Самосмазывающийся (LDP) до 160 т ч
Используется специальная, более вязкая, жидкая или твердая смазка, прочная пленка или покрытие. Улучшено качеством обработки внутренних компонентов…

С магнитным центрированием, левитацией от — — 160 до —
Практически, бесконтактный механизм, основанный на принципе магнитной левитации.
Очень тихий (До 80% тише, чем остальные. ), обладает большей надежностью, лучше переносит использование в агрессивных средах.

Подшипники качения

Подшипник качения(ball bearing) до 60 — 90 т ч
Подшипники качения, теоретически немного более шумные, но и более износостойкие.
Они состоят из колец, тел качения (шариков или роликов), сепаратора, удерживающим тела качения в нужном положении. Пространство между телами заполняется смазкой.

Керамический (ceramic bearing) до 160 т ч
Изготавливается с применением керамических материалов, выдерживает более высокие температуры и обладает более низким уровнем шума.

Виды разъемов вентиляторов для пк


Предупреждение!
Если у вентилятора присутствует несколько различных разъемов для подключения, то используйте только один из на выбор, иначе возможно нанести повреждения устройствам.

3pin и 4 pin — pwn

Общее
Оба предназначены для подключения к материнской плате.
У обоих разъемов третий контакт является тахометром, определяющим количество оборотов и сигналом.
Оба типа взаимно совместимы, то есть 3pin возможно подключить к 4pin разъему и наоборот, соблюдая ключ. *

Отличия 3pin от 4pin
Отличие 3pin от 4pin коннектора заключается в следующем:

У 3pin количество оборотов фиксированно, как правило, это максимальное значение, которое обычно, изначально не контролируется в автоматическом режиме.

У 4pin регулировка производится автоматически, за счет получаемого PWM сигнала с 4 контакта.

Встречается внутри блоков питания, на платах видеокарт и . Имеет только + 12в и заземление (-), контроль скорости возможен и осуществляется путем изменения напряжения, с отсутствием информации о количестве оборотов для пользователя.

Четырех контактный разъем, используемый, для подключения к блоку питания. Как правило, в нем задействованы только два провода из 4, + и – от 12в. Подразумевает работу вентилятора на максимальной скорости.

*
Если подключить 3pin коннектор к 4pin разъему или наоборот, то регулировка по принципу PWM осуществляться не будет. Если материнская плата способна самостоятельно регулировать скорость через 3 контакт, путем изменения напряжения, то регулировка будет происходить самостоятельно, если нет, то возможно выставить фиксированное количество оборотов, в биосе, либо оставить, как есть, тогда вентилятор, все время будет работать на максимальных оборотах.

RPM — количество оборотов в минуту.
CFM — максимально возможный поток воздуха за минуту в кубических футах.
Уровень шума измеряется в сонах — sone или децибелах — dBA. Тихими считаются со значениями до 2000 об/м (RPM).

Пример
Представим, два вентилятора.

Правильный выбор вентилятора для корпуса компьютера

Новые технологии и программы разрабатываются каждый день, требуя от компьютеров всё большей производительности и отдачи. С каждым годом видеокарты, платы, процессоры и другие составляющие компьютера совершенствуются, что приводит к увеличению потребляемой и выделяемой энергии. В связи с этим пользователь нередко сталкивается с проблемой перегрева, что, в свою очередь, ведёт к ухудшению работы системы и поломкам составляющих ПК. Именно поэтому вентилятор – крайне важный аспект в нормальной работе компьютера. Все современные устройства оснащены той или иной системой охлаждения. Бывает, что вентилятор установлен только на процессоре или на видеокарте. Их задача – сохранять температуру только одного элемента, выбрасывая при этом горячий воздух в корпус. Такая система спасает отдельные детали, но общая температура внутри корпуса только повышается. Именно поэтому вентиляционная система должна быть полной и обслуживать все компоненты устройства. Корпусный вентилятор – отличное решение сразу многих проблем.

Рекомендации по выбору вентилятора для корпуса компьютера.

Критерии выбора

Срок службы системного блока напрямую зависит от системы охлаждения. Но перед тем как выбрать вентилятор для корпуса ПК, рассмотрим существующие разновидности кулеров и критерии, на которые стоит обратить внимание.

Тип компьютера

Для среднестатистических домашних или офисных компьютеров подойдут практически любые недорогие модели, подходящие компьютеру по таким параметрам как размер, скорость и т. д.

Чувствительность к шуму

Если вы восприимчивы к шуму, то стоит учесть этот показатель. Существует целый ряд инновационных моделей, способных подавлять шум благодаря особому строению лопастей. Стоят такие вентиляторы дороже.

Параметры использования ПК

Игровые компьютеры и ноутбуки нуждаются в усиленной системе охлаждения ввиду постоянного нагревания видеокарты и процессора. Если ваш ПК зачастую выполняет игровую функцию, стоит обратить внимание на более дорогие и качественные вентиляторы.

Внешний вид

Даже этот показатель для многих имеет значение. На данный момент самые элитные модели оснащены подсветкой, аксессуарами и необычными цветовыми решениями. Определившись с основными показателями, можно перейти к рассмотрению технической части и разобраться, какими характеристиками обладают кулеры и какие из них наиболее важные.

Диаметр вентилятора

Диаметр имеет большое значение при выборе кулера. Стандартные размеры – 80, 90, 92 и 120 мм. Не все диаметры универсальны – выбирать нужно в соответствии с размерами корпуса системного блока. Перед тем как покупать вентилятор, стоит замерить сам корпус и свободное место в нём, иначе кулер может попросту не влезть. Есть и другой способ – практически все производители указывают в инструкции к системнику размеры допустимого вентилятора. Говоря о технических особенностях, отметим, что кулеры с наибольшим диаметром лопастей работают быстрее и тише остальных.

Вид подключения

По типу подключения все кулеры можно разделить на 3 группы: 3 pin, 4 pin и Molex.

3 контакта (3 pin)

При данном типе вентилятор подключается к материнской плате при помощи 4 pin-разъёма, но только 3 из них задействованы. Это означает, что регулировать показатели кулера (к примеру, частоту вращения лопастей) будет проблематично.

4 контакта (4pin)

Этот способ подключения – самый надёжный. В нём задействованы все 4 контакта, что позволяет регулировать частоту вращения с учетом изменений напряжения.

Особенность данного типа заключается в том, что разъёмы на плате совсем не нужны: соединение связано напрямую с блоком питания. Регулировка частоты вращения в данном случае невозможна.

Частота вращения и шумность

Единицей измерения этого показателя являются Децибелы (Дб). Его нормой считается предел до 25 Дб в больших моделях и 35 Дб в маленьких. Частота вращения – главный аспект в работе кулера, так как она и создаёт воздушный поток для охлаждения. Но эти два показателя взаимозависимы: чем выше частота, тем выше и уровень шума. Подбирать нужно так, чтобы их соотношение отвечало требованиям системного блока и в то же время не мешало. В среднем соотношение выглядит следующим образом (диаметр – обороты):

  • 80 мм. – от 2000 до 2700 оборотов в минуту;
  • 90-92 мм. – от 1300 до 2500 оборотов в минуту;
  • 120 мм. – от 800 до 1600 оборотов.

Тип подшипника

Подшипник – это механизм, благодаря которому вращаются лопасти. Он подвержен наибольшему воздействию и износу из-за трения, а также является главным источником шума. Эта характеристика отвечает за долговечность кулера. К основным типам относятся:

  1. Подшипник скольжения. Характеризуется непродолжительным сроком работы, средней шумностью и низкой ценой.
  2. Подшипник качения. Отличается повышенной шумностью, но и срок работы значительно больше.
  3. Гидродинамический подшипник. Данный тип обеспечен самосмазыванием, что снижает трение и продлевает срок эксплуатации.
  4. Подшипник с магнитным центрированием. Основой этого механизма являются ось и магнитное поле, благодаря чему трения практически не происходит. Срок службы, соответственно, очень высок, как и цена.

Выбирая вентилятор, определитесь, какие характеристики для вас важнее. Производители представляют огромную вариативность, давая возможность подобрать что-то оптимальное для каждого.

Как выбрать вентилятор для корпуса

Технологии неустанно совершенствуются, специализированные программы и новейшие игры требуют всё более и более мощных компьютеров. Процессоры, видеокарты и другие компоненты компьютера ежегодно модернизируются, а это приводит и к выделению большего тепла. Чрезмерный нагрев может грозить зависаниями, поломке отдельных элементов и усиливающимся гулом кулеров. Скапливающаяся в корпусе пыль лишь усугубляет ситуацию.

На помощь приходят вентиляторы. Сегодня они практически всегда ставятся на блок питания, на процессор и на мощные видеокарты. Но зачастую этого бывает недостаточно: эти вентиляторы обслуживают только свою деталь, выбрасывая горячий воздух в корпус. Этот процесс не только снижает эффективность кулеров, которые засасывают вновь тот же самый горячий воздух, но и приводит к нагреву других частей компьютера. Поэтому в корпусе необходима должная вентиляция, чтобы снаружи воздух подавался, а изнутри — выдувался. Именно для этого нужны вентиляторы для корпуса.

К сожалению, для многих это вопрос суммы, оставшейся со сдачи. Мало того, при выборе корпусного вентилятора покупатели часто ориентируются только на его размер. Это в корне неверно, так как неправильно подобранный вентилятор приведёт к лишнему раздражающему шуму, да и прослужит очень мало. Если же подходить к вопросу серьёзно, необходимо разобраться в параметрах корпусных вентиляторов.

Читать еще:  Как управлять двумя мониторами от одного компьютера?

Чем различаются вентиляторы для корпуса

Размер вентилятора

Речь идёт о физических размерах каркаса, помогающих ориентироваться при подборе вентиляторов к различным комплектующим и к корпусу. Это важнейшая характеристика, потому что при несоответствии параметрам корпуса вентилятор просто не получится вставить. Существует множество стандартных размеров вентиляторов: от 25х25 мм до 200х200 мм.

Вентиляторы размером от 25х25 до 70х70 мм нужны для охлаждения небольших участков, например, северного или южного моста на материнской плате. В связи со спецификой использования выбор таких вентиляторов не столь велик. Применяются в тонких серверах для продува корпуса на высоких оборотах.

Вентиляторы размером 80х80 и 92х92 мм являются стандартными для небольших корпусов. Их можно использовать, к примеру, в офисных компьютерах. Такие вентиляторы довольно популярны и распространены. Также их используют для особых целей, например, охлаждения материнских плат небольших размеров. Примерно 12-15 лет назад использовались в стандартных ATX корпусах практически повсеместно.

Вентиляторы размером 120х120 и 140х140 мм используют на больших корпусах. Они отлично подойдут для мощных компьютеров, например, игровых. Нужно учитывать, что чем больше вентилятор, тем меньшая скорость вращения ему требуется для создания определённого воздушного потока. Следовательно, большие вентиляторы шумят ощутимо меньше маленьких.

Вентиляторы размером 150х140 и 200х200 мм используются, когда в большом корпусе требуется дополнительный мощный поток воздуха. Они обычно ставятся на верхнюю или боковую часть корпуса. Выбор моделей такого размера не столь велик.

Также бывают вентиляторы нестандартных размеров, когда диаметр вентилятора больше расстояния между отверстиями крепления (как на картинке ниже). Учитывайте это в корпусе с плотной компоновкой вентиляторов. Два таких вентилятора с креплением 120х120 мм, но диаметром крыльчатки 140 мм не получиться поместить рядом друг с другом в корпусе с местом под крепление 120 мм вертушек.

Максимальная и минимальная скорость вращения

Скорость вращения измеряется в количестве оборотов за одну минуту. При одинаковых размерах каркаса и лопастей вентилятор с большей скоростью вращения будет охлаждать системный блок эффективнее. Средней скоростью вращения считается: у вентиляторов размером 80 мм — 2000–2700 об/мин, 90–92 мм — 1300–2500 об/мин, 120 мм — 800–1600 об/мин. Вентиляторы со скоростью вращения больше 3000 об/мин используются для специфических целей, например, для многих жидкостных систем охлаждения.

Различие минимальной и максимальной скорости вращения вентилятора указывает на возможность её регулировки. Однако стоит отметить, что чем выше скорость вращения, тем больше шума издаёт вентилятор.

Максимальный и минимальный уровень шума

Вентилятор крутится, создаётся воздушный поток, происходит трение деталей — следствием всего этого является шум. Шумность измеряется в децибелах — дБ. Чем громче вентилятор, тем, согласитесь, утомительнее рядом с ним работать, поэтому лучше выбирать наиболее тихие модели. Оптимален уровень шума не более 30–35 дБ.

Вообще, самый сложный аспект при выборе вентилятора, это найти компромисс между скоростью вращения, силой воздушного потока и шумом. Дорогие и наиболее эффективные вентиляторы славятся своим низким уровнем шума при достаточно мощном воздушном потоке.

Регулировка оборотов

Регулировать количество оборотов вентилятора в минуту нужно для того, чтобы оптимизировать работу охлаждения. К примеру, в корпусе довольно низкая температура, а вентилятор крутится на скорости 2500 об/мин — есть смысл уменьшить количество его оборотов, чтобы понизить уровень шума и энергопотребление. Если же в корпусе наоборот слишком высокая температура, скорость вентилятора лучше увеличить. При выборе вентилятора стоит учитывать параметры материнской платы и тип разъёма питания. Регулировка скорости вращения крыльчатки вентилятора может осуществляться несколькими способами.

Первый — автоматическая регулировка. В этом варианте скорость вентилятора управляется материнской платой автоматически или через команды пользователя (например, с помощью специального устройство, устанавливаемого на корпусе компьютера — реобаса). Материнская плата сама анализирует степень нагрева комплектующих ПК.

Второй способ — плавная ручная регулировка. В этом варианте для регулировки скорости пользователю нужно покрутить ручку управляющего резистора на специальном блоке. При этом скорость вращения вентилятора меняется плавно, то есть её можно уменьшить или увеличить как на большие значения, так и на совсем маленькие. Проблема ручной регулировки, это риск перегрева ПК, если не следить за температурой компонентов. При недостаточной скорости вращения воздух внутри корпуса будет закономерно сильнее нагреваться, что может повлечь за собой вылеты и зависания.

Третий способ — ступенчатая ручная регулировка. Она выполнена в виде специальных переходников, подключив через которые вентилятор, пользователь может изменить скорость его вращения. При этом нужно учесть, что количество ступеней, а значит, и количество оборотов будет строго фиксировано.

Тип разъёма питания

Сегодня существует четыре типа подключения вентиляторов: 2-pin, 3-pin, 4-pin и molex.

2-pin — специфический разъем. Применяется в блоках питания, а в обычных ПК на современных материнских платах не встречается.

3-pin — это подключение к материнской плате с возможностью наблюдения за скоростью вращения вентилятора через материнскую плату. Стоит отметить, что 3-pin кабели можно подключать и к 4-pin разъёму.

4-pin — это подключение к материнской плате с возможностью автоматической регулировки скорости вращения вентилятора в зависимости от температуры в системе. Такие вентиляторы обычно стоят на процессорах и видеокартах. Возможно подключение 4-pin кабеля к 3-pin разъёму, но при этом функция автоматического регулирования скорости вращения будет недоступна.

Molex — это подключение напрямую к блоку питания с возможностью ручной регулировки скорости вращения вентилятора.

Тип подшипника

Как вы знаете, подшипники нужны для кручения вентилятора вокруг втулки. Так как это основное место трения деталей, подшипник наиболее подвержен разрушению, а также именно его качество отвечает за уровень шума. В корпусных вентиляторах устанавливается один из четырёх видов подшипников: скольжения, качения, гидродинамический и с магнитным центрированием.

Подшипник скольжения — это простейшая конструкция подшипника, в котором трутся две полированных поверхности. Это наиболее дешёвый и тихий вариант, однако он отличается небольшим временем службы и ухудшением работы при высоких температурах. Также в силу конструкции его можно использовать только в вертикальном положении.

Подшипник качения или шарикоподшипник — более сложная конструкция, в которой предусмотрено специальное кольцо с шариками, размещённое между подвижной частью (крепящейся к оси), и неподвижной (прикреплённой к основанию). Катящиеся шарики обеспечивают меньшее трение, чем в подшипниках скольжения, и более высокую надёжность. Ресурс таких вентиляторов может достигать 15000 часов непрерывной работы, их можно использовать при высоких температурах и в любом положении. Главный минус такой конструкции — более высокий уровень шума из-за трения движущихся частей подшипника, особенно на высоких оборотах.

Гидродинамический подшипник — это по сути усовершенствованный подшипник скольжения. Он заполнен специальной жидкостью, создающей прослойку, по которой скользит подвижная часть подшипника. Таким образом удаётся избежать непосредственного контакта между твёрдыми поверхностями и значительно снизить трение. Гидродинамические подшипники более долговечны в сравнении с их предшественниками, а также практически бесшумны.

Подшипник с магнитным центрированием основаны на принципе магнитной левитации. Основа конструкции — вращающаяся ось, «подвешенная» в магнитном поле. Таким образом удаётся избежать контакта между твёрдыми поверхностями и ещё больше снизить трение. Это самый совершенный, долговечный и бесшумный тип подшипников. Его минус — высокая стоимость.

Воздушный поток на максимальной скорости

Эта характеристика — одна из самых важных при выборе вентилятора для корпуса. Она обозначает число кубических футов воздуха в минуту, которые способен прогнать через себя вентилятор системы охлаждения. Чем выше это число, тем эффективней будет охлаждение. Воздушный поток зависит от многих факторов, таких как диаметр вентилятора, размер лопастей, скорость вращения, материал, из которого изготовлен вентилятор. При различных комбинациях этих параметров стоит обращать особенное внимание именно на воздушный поток.

Помимо всего прочего, вентиляторы различаются внешним видом: от цвета лопастей до наличия подсветки. Конечно, если ваш компьютер спрятан глубоко под столом, вряд ли это будет иметь для вас значение. Но для профессионалов, особенно геймеров, обустраивающих своё игровое пространство, эта характеристика может сыграть свою роль.

Критерии выбора

Вентиляторы для корпуса играют важную роль в продевании срока службы компьютера. Но выбрать их не так просто, так как для различных целей подойдут разные модели. Мы распределили вентиляторы на группы, исходя из потребностей пользователя.

Вентиляторы для компьютерных корпусов

Ни для кого не секрет, что практически вся мощность, потребляемая компьютерным «железом», выделяется в тепло — «греется» процессор, «греется» видеокарта, «греются» жесткие диски и т.п. Как правило, системой потребляется и, соответственно, уходит в тепло от 40% до 80% от номинальной мощности БП, в зависимости от комплектации компьютера различными платами расширения и дополнительными устройствами. Для слабо укомплектованной системы с БП номинальной мощностью всего 200 Вт по минимуму получается уже 80 Вт, уходящих в тепло. Штатного вентилятора в блоке питания для отвода даже такой минимальной мощности может быть недостаточно. Поэтому для эффективного теплоотвода корпуса оборудуют дополнительными вентиляторами (обычно от 1 до 4 вентиляторов). Эти вентиляторы могут быть уже установлены (весьма редкое явление!) или же поставляться опционально (иными словами пользователь сам может их выбрать).

Таким образом, в более или менее путевых корпусах должны присутствовать хотя бы отсеки для установки дополнительных вентиляторов (в хороших корпусах — от двух до четырех отсеков). Если таковых нет, то не стоит обращать внимание на такой корпус. Даже если вентиляторы уже установлены, все-таки неразумно полностью доверять производителю корпуса судьбу процессора, «материнки», видеокарты и других устройств. Обязательно нужно посмотреть, какие это вентиляторы, правильно ли они установлены и соответствуют ли они требованиям качества, производительности, надежности. Не исключаю возможности, что потребуется их заменить. Если же вентиляторы не установлены, то мы можем сразу приступить к рассмотрению вопроса — что и как нам выбрать.

Не все вентиляторы одинаково полезны

Базовые сведения, а также некоторые подробности о вентиляторах и об их использовании можно получить и узнать на странице сайта Термоскоп: О вентиляторах подробнее.

Скажу сразу — не бывает дешевых вентиляторов. Бывают либо довольно плохонькие, либо достаточно дорогие 🙂 Конечно, не все дорогие вентиляторы оказываются действительно качественными — можно наткнуться на подделку (см. ниже) или на second-hand. Но, несомненно то, что большинство совсем уж дешевых вентиляторов ($1-3) всегда не заслуживают оценки выше «удовлетворительно».

Читать еще:  Какие службы можно отключить в Windows XP?

Вопрос «brand name или no name«, а точнее «brand name или unknown name» (практически все вентиляторы как-то маркированы, поэтому под no name будем далее подразумевать вентиляторы производства малоизвестных фирм или же совершенно неясного происхождения) по отношению к вентиляторам решается не так уж просто. Сомнительный с виду вентилятор может оказаться просто не маркированным брэндом. И наоборот — предполагаемый брэнд может быть всего лишь архигнусной подделкой. Самое печальное в этой истории — нет абсолютно объективных признаков, позволяющих отличить действительный брэнд от изделий сомнительного качества.

Но могу вас успокоить — есть, все-таки, группа признаков, позволяющих с достаточно высокой степенью достоверности определить, что мы держим в руках действительно качественный вентилятор:

  1. Материал корпуса и крыльчатки. Пластик не должен быть слишком твердым или же слишком мягким. Вентилятор из слишком твердого материала чувствителен к механическим повреждениям (трещины, сколы и т.п.). Вентилятор из мягкого материала не сможет работать нормально при температурах выше 45 град. Алюминиевый же корпус вентилятора — это почти стопроцентная гарантия того, что вы наткнулись на очень хороший брэнд.
  2. Вес вентилятора. Если вам говорят, что это вентилятор на двух подшипниках качения, а он легкий, как пушинка, то вас, мягко скажем, вводят в заблуждение. Хорошие вентиляторы всегда достаточно тяжелые (даже модели 60х60 мм).
  3. Качество внутренней поверхности лопастей крыльчатки. Поверхность должна быть гладкой, близкой к полированной. Если же она «разлохмачена», то вы, скорее всего, наткнулись на no name.
  4. Маркированная проводка электропитания. Как правило, у no name проводка не маркирована.
  5. Дополнительные функции — вывод тахометра, термоконтроль, сигнал останова. Китайские кооператоры не утруждают себя использованием дополнительных функций в вентиляторах.
  6. Шум и вибрация. При покупке обязательно попросите включить вентилятор и подержите его в руках. Высокий уровень шума и вибрации — показатель того, что вентилятор или no name, или отъявленный second-hand.
  7. Качество печатной платы и обмотки электромагнита. С этим проблема. Думаю, ни один продавец не позволит вам вскрыть вентилятор и рассматривать печатную плату.
  8. Качественная маркировка. Не стоит доверять наклейкам, похожим на распечатку на матричном принтере.

Еще один важный вопрос, какой вентилятор лучше: на подшипнике скольжения или же на подшипнике качения? Вам могут ответить: «Конечно вентилятор на подшипнике качения. Лучше даже на двух подшипниках качения! Такой вентилятор долго служит и вообще он намного лучше других». В действительности, это не совсем так, а в некоторых случаях, далеко не так.

Выбор подшипника качения или же подшипника скольжения определяют два объективных параметра — влажность и температура.

Разберемся с влажностью. Повышенная влажность достаточно серьезно влияет как на подшипник качения, так и на подшипник скольжения. Однако, подшипник скольжения подвержен такому влиянию в меньшей мере. Поэтому, если вы планируете эксплуатировать вентиляторы в условиях повышенной влажности, разумнее будет выбрать вентиляторы именно на подшипниках скольжения.

Аналогичная ситуация получается и в условиях пониженной влажности. Вентиляторы на подшипниках скольжения менее подвержены негативному влиянию излишней сухости воздуха. Соответственно, их и следует использовать в таких условиях. С температурой воздуха дела обстоят несколько иначе. В условиях средних температур (25 — 40 град) вентиляторы на подшипниках качения по сроку службы опережают вентиляторы на подшипниках скольжения лишь на пару тысяч часов. А вот при температуре 50 — 70 град вентиляторы на подшипниках качения проявляют себя в полной мере. В таких условиях срок службы вентиляторов на подшипниках качения в 3 -5 раз выше, чем у вентиляторов на подшипниках скольжения. Речь идет уже о десятках тысяч часов. На моем опыте в серьезно упакованное промышленное устройство были установлены три вентилятора на подшипниках скольжения. Температура в корпусе составляла 55 — 60 град. Уже через полгода начал сбоить один из вентиляторов. Через некоторое время за ним последовали и другие. После установки вентиляторов на подшипниках качения имеем спокойно работающие вентиляторы уже в течение почти трех лет.

Есть еще два достаточно важных фактора. Это уровень шума и, как вы правильно догадались, деньги. Вентилятор на подшипниках качения всегда «шумнее» (некоторые модели значительно шумнее). Да и по деньгам он дороже. В особенности это касается моделей 120×120 мм.

В итоге, если температура в вашем компьютерном корпусе не превышает 40 град или же в помещении слишком влажно или наоборот очень сухо, если вас раздражает шум, если вам, в конце концов, просто жалко честно заработанных «зеленых» — берите вентиляторы на подшипниках скольжения.

Если же вас не волнует шум и финансовый вопрос, если вы владеете супер-навороченной системой, выделяющей 200 Вт тепла и более, если в вашем помещении установлена система комфортного кондиционирования — берите вентиляторы на подшипниках качения.

Правильные вентиляторы

Рекомендую обратить взор на вентиляторы фирм Sunonwealth Electric Machine Industy Co., Ltd. и Nidec America Corporation. Почему? Во-первых, эти две фирмы находятся в ряду признанных лидеров «вентиляторостроения». Ну и, во-вторых, вентиляторы этих фирм широко распространены в России.

Разберемся с модельным рядом вентиляторов Sunon.

На рисунке приведена расшифровка наименования вентиляторов Sunon. В качестве суффикса обычно фигурирует следующее:

  • 6/8 — 6 или 8 полюсов электромагнита
  • A — защита двигателя
  • AS — защита двигателя в комбинации с термоконтролем
  • AM — защита двигателя в комбинации со звуковым сигналом
  • AD — комбинация AS и AM

Вентиляторы Sunon характеризуются отменным качеством и достаточно большим временем наработки на отказ. Это касается и вентиляторов на подшипниках качения, и вентиляторов на подшипниках скольжения. Также, вентиляторы Sunon характеризуются и весьма высокими значениями потока CFM и статического давления. В некоторых моделях применяется и новое технологическое решение — Vapo bearing подшипник.

Модели вентиляторов Sunon на подшипниках скольжения достойные особого внимания:

  • из ряда 60×60 мм — KD1206PTV1 (Vapo bearing подшипник)
  • из ряда 80×80 мм — KD1208PTS1-6 (41.7 CFM)
  • из ряда 92×92 мм — KD12009PTS1 (49 CFM)
  • из ряда 120×120 мм — KD1212PTS1-6A (88 CFM) и KD1212PMSX-6A (119 CFM)

Модели вентиляторов Sunon на подшипниках качения достойные особого внимания:

  • из ряда 80×80 мм — KD1208PTB1-6 (42,5 CFM)
  • из ряда 92×92 мм — KD1209PTB1 (50 CFM)
  • из ряда 120×120 мм — KD1212PTB1-6A (90 CFM) и KD1212PMBX-6A (120 CFM!)

Описания и технические характеристики основных моделей вентиляторов Sunon можно найти на странице www.sunon.com.tw/standard.htm.

Модельный ряд вентиляторов Nidec также достаточно широк. Имя модели формируется из серии и номера модели. Например: серия TA300DC, номер E34399. Все современные вентиляторы Nidec имеют общее наименование — BETA V. Оно отчетливо видно на наклейке. Если же вы встретите что-то типа BETA SL или BETA B, то это или глухой second-hand, или подделка.

Вентиляторы Nidec очень популярны в России. И не зря.

Инженеры Nidec проделали большую работу по модификации стандартной конструкции подшипника скольжения. В результате многие современные вентиляторы Nidec построены на серьезно улучшенном подшипнике скольжения. В таком подшипнике используется дополнительное магнитное поле, уравновешивающее ротор, что делает вентилятор хорошо сбалансированным. А усовершенствованная механическая конструкция подшипника исключает возможность утечки масла. Вентиляторы на улучшенном подшипнике скольжения имеют букву E в номере модели. Например: модель E34399.

Ничего плохого нельзя сказать и о вентиляторах Nidec на подшипниках качения.

Еще одно достоинство, довольно важное для нас — эти вентиляторы несколько дешевле, чем вентиляторы Sunon.

В вентиляторах Nidec могут присутствовать ряд опций, наиболее примечательные из них (дополнительное число после номера модели):

  • 33 — три провода (есть дополнительный вывод тахометра)
  • 34 — четыре провода (вывод тахометра и вывод сигнала останова)

Модели вентиляторов Nidec достойные особого внимания:

  • из ряда 60×60 мм (TA225DC) — M34418 (25 CFM, подшипник качения) и E34390 (улучшенный подшипник скольжения)
  • из ряда 80×80 мм (TA300DC) — M33406 (43 CFM, подшипник качения) и E34398 (улучшенный подшипник скольжения)
  • из ряда 120×120 мм (TA450DC) — B34262 (130 CFM!)

Описания и технические характеристики моделей вентиляторов Nidec можно найти на странице http://www.nidec.com/fans.html.

Все сказанное выше практически в равной степени относится и к вентиляторам для компьютерных блоков питания. Некоторые торгующие организации иногда разделяют вентиляторы на отдельные категории — или для БП, или дополнительные в корпус. На самом деле такого разделения нет. Многие модели вентиляторов можно эффективно использовать как в БП, так и в корпусе.

Эта статья ни в коей мере не ограничивает ваш выбор только вентиляторами Sunon и Nidec. Существует масса достойных моделей вентиляторов таких признанных brand name, как Matsushita Electric, NMB Technologies, Indek Corporation, Comair Rotron, Y. S. Tech. Зачастую технические параметры и эксплуатационные характеристики некоторых моделей вентиляторов этих производителей существенно лучше аналогичных моделей Sunon и Nidec. К сожалению, такие вентиляторы не получили широкого распространения в России (при очень сильном желании, конечно, можно найти). Поэтому мы вынуждены выбирать лучшее из того, что реально есть на рынке. А лучшим будет выбор именно вентиляторов Sunon и Nidec.

Выбор корпусных вентиляторов

Страницы материала

Эта работа была прислана на наш «бессрочный» конкурс статей.

От правильного выбора корпусных вентиляторов зависит не только эффективность охлаждения внутренностей корпуса, но и (что часто даже более важно) уровень шума. Особенно большой простор для творчества при самостоятельной врезке вентилятора в корпус или их установке в навороченных корпусах, в которых есть место под 5-6 вентиляторов. Общий принцип их установки достаточно прост (см. мою статью «Вентиляция корпусов — мифы и реальность»). Если есть несколько вентиляторов и нужно с их помощью получить максимальный воздухообмен, они все должны работать в одну сторону (для корпусов типа тауэр, как правило, на выдув), при этом должен быть обеспечен свободный доступ наружного воздуха в корпус (то есть достаточная площадь вентиляционных отверстий, соизмеримая с эффективной площадью вентиляторов). В этой статье я сначала попытаюсь дать краткий FAQ по вентиляторам, затем более подробно опишу методику выбора «с цифрами в руках».

Читать еще:  Мастер диагностики не работает как исправить?

Какие бывают вентиляторы

Мы видим, что для каждого размера есть три модификации (в порядке увеличения оборотов и мощности) — L, M, H. Наиболее распространенной является серия M — она обеспечивает наилучшее соотношение между производительностью и шумом. Нетрудно догадаться, что первые две-три цифры обозначают диаметр, а следующие две высоту. Кстати, диаметр измеряется как размер стороны «квадрата», реальный диаметр крыльчатки на 5-10 мм меньше.

Выбрав нужный вентилятор из таблицы, перед походом в магазин выпишите потребляемый им ток (или мощность), потому что на ценнике продавцы обычно указывают лишь диаметр, ничего не говоря о производительности. А ток или мощность всегда написаны на наклейке вентилятора, поэтому ошибиться будет трудно (особенно если придется покупать вентилятор другой фирмы, у которой своя система обозначений и своя линейка вентиляторов).

Основной характеристикой вентилятора является производительность (расход воздуха) Q, измеряемая в CFM (кубических футах в минуту). Сведения о ней обычно есть на сайте производителя, а иногда и на самом вентиляторе. Однако это максимальная производительность в режиме «настольного вентилятора», при установке в корпус она упадет. Также вентилятор характеризуется создаваемым напором (давлением), скоростью воздушного потока, шумом, потребляемой мощностью, особенностями конструкции и некоторыми другими менее значимыми деталями. Из этих характеристик обычно указывают шум (правда, в каких-то «китайских децибелах», при реальных измерениях он обычно оказывается намного больше), иногда указывают напор, а скорость потока легко вычислить, разделив производительность на эффективную площадь.

Тут я дам тезисы и рекомендации общего характера. Некоторые следуют из анализа таблицы характеристик, обоснование остальным будет в конце статьи.

  1. Чем больше напор вентилятора, тем меньше падает его производительность при установке в корпус.
  2. Максимальная производительность и напор прямо пропорциональны оборотам.
  3. Обороты прямо пропорциональны напряжению.
  4. При одинаковой максимальной производительности — напор, скорость потока и мощность будут меньше, а КПД больше:
    • у вентилятора большего диаметра по сравнению с более быстроходным меньшего диаметра;
    • у нескольких параллельно включенных вентиляторов на пониженных оборотах по сравнению с одним таким же на повышенных;
    • у одного вентилятора большого диаметра по сравнению с несколькими параллельно включенными меньшего диаметра;
    • у осевого вентилятора по сравнению с центробежным (бловером).
  5. При равной максимальной производительности:
    • вентилятор большего диаметра заметно тише, чем быстроходный вентилятор меньшего диаметра;
    • два параллельно включенных вентилятора на пониженных оборотах намного тише, чем один такой же на повышенных оборотах;
    • два параллельно включенных вентилятора могут быть как тише, так и громче, чем один большего диаметра.

Расчет вентиляции корпуса

Сначала рассчитываем необходимый объем воздуха, который нужно прокачать через корпус. Исходной формулой служит уравнение теплового баланса при условии, что теплопередачей через стенки пренебрегаем:

N -мощность системы (если вентилятор БП работает на вдув, сюда надо прибавить порядка 50Вт тепловыделения в нем); Q — расход; C — теплоемкость воздуха; P — плотность воздуха; T — температура (внутренняя и наружная соответственно).

Отсюда после подстановки значений С, P и перевода Q из кубометров в секунду в CFM получаем формулу для практического использования:

Эта формула приближенная, поскольку теплоемкость и плотность воздуха зависят от давления и температуры, а они нам точно неизвестны.

Мощность системы получают либо суммированием мощности компонентов, либо просто оценкой. Для средней современной системы эта мощность будет 150-200 Вт, для «навороченной» и разогнанной — порядка 250 Вт. Основной «печкой» является процессор, данные по его мощности можно найти на сайтах производителей или в многочисленных обзорных статьях. При разгоне с поднятием напряжения считаем, что мощность пропорциональна квадрату напряжения (например, при увеличении напряжения с 1,6 до 1,75В мощность увеличится на 20% при той же частоте).

Надо иметь в виду, что в формулу входит «средняя температура по больнице», то есть температура при условии идеального перемешивания воздуха по всему объему. На самом деле такого не бывает, в зависимости от направления потоков и тепловыделения конкретных устройств где-то температура будет выше, а где-то ниже средней. Причем локальное повышение температуры будет как раз вблизи самых горячих элементов, ради которых мы, собственно, эту вентиляцию и затеяли. Поэтому весьма эффективно применение воздуховодов, соединяющих вход кулера (например, процессорного) непосредственно с внешней средой либо его выход с вытяжным вентилятором. В первом случае температура процессора не будет зависеть от температуры в корпусе, во втором температура в корпусе не будет зависеть от тепловыделения процессора.

Рабочая характеристика вентилятора

Рабочая (расходная, напорная) характеристика вентилятора — это зависимость расхода от напора. Чем больше напор (противодавление в корпусе или местные потери, например в воздуховоде), тем меньше будет расход. Много таких характеристик есть, например, на сайте www.evercool.com (поэтому я и взял для примера вентиляторы именно этой фирмы). Подобную характеристику можно построить и для корпуса, только там все наоборот — чем больше давление, тем больше будет расход через вентиляционные отверстия. Наложив одну характеристику на другую, в точке их пересечения получаем рабочую точку вентилятора, показывающую реальный расход при установке вентилятора в данный корпус.

На этом рисунке представлены характеристики 120-мм вентиляторов, также для сравнения дана характеристика самого мощного из 92-мм вентиляторов (кстати, по шуму он примерно равен самому слабому из 120-мм агрегатов). Зеленым цветом показаны расчетные характеристики корпусов: светлая — характеристика «среднего» корпуса без переделок (но с заглушенным отверстием под дополнительный вентилятор на задней стенке, если он там не установлен), темная — характеристика этого корпуса с увеличенной вдвое площадью вентиляционных отверстий (как этого добиться, см. статью «Вентиляция корпусов — мифы и реальность»).

Допустим, корпус охлаждается только одним вентилятором БП, и нужно выбрать, какой вентилятор для этого лучше подходит (это вполне жизненная задача для владельцев десктопов и тауэров с боковым расположением БП). Мы видим, что максимальная производительность у 120-мм вентиляторов высокая, но она быстро падает с ростом напора, и в определенный момент вперед вырывается 92-мм вентилятор. В стандартном корпусе он лишь чуть-чуть уступает самому мощному из 120-мм (точки 1 и 2), заметно опережая два других (точки 3,4). По сравнению с равношумным 12025L 92-мм вентилятор обеспечивает на четверть большую производительность (27 CFM против 22 CFM), а по сравнению с близким по производительности 12025H «малыш» на 4 дБА (в полтора раза) тише. Очевидно, что в данном случае 92-мм вентилятор выглядит предпочтительнее, чем любой из 120-мм.

Теперь откроем слоты или увеличим площадь вентиляционных отверстий каким-нибудь другим способом (характеристикой корпуса станет темно-зеленая кривая). Видно, что эта мера для самого слабого 120-мм вентилятора эффективнее (точки 3->5), чем его замена на самый сильный без изменений корпуса (точки 3->2). Несмотря на заметную прибавку (около 60%), производительность 120-мм вентиляторов все равно остается вдвое меньше максимальной, в то время как у их 92-мм коллеги она почти достигла пика (замечу, что и в этом случае он остается производительнее «младших» 120-мм). Теперь уже реально обеспечить расход в 40-45 CFM, чего вполне достаточно для хорошего охлаждения умеренно разогнанной системы. Таким образом, и в этом случае 92-мм «карлсон» остается оптимальным выбором по соотношению производительность/шум, не говоря уже о цене. Использование 120-мм вентилятора оправдано только в том случае, если еще больше увеличить площадь вентиляционных отверстий (например, открыванием свободного 5-дюймового отсека, пунктирная линия на графике).

Параллельное и последовательное включение вентиляторов

При параллельном включении вентиляторов (то есть когда они все работают в одну сторону) их расходы складываются. При последовательном включении (когда один работает на вдув, другой на выдув или они установлены друг за другом, например в некоторых БП) складываются их напоры. Для иллюстрации на рис.3 показаны характеристики вентилятора 9225M (красная линия), двух таких же вентиляторов при последовательном (синяя линия) и параллельном (коричневая линия) включении.

Сформулируем еще одну типовую задачу. Есть стандартный корпус с двумя отверстиями под дополнительные вентиляторы: одно на задней стенке (на выдув), второе на передней (на вдув). В БП установлен вентилятор 9225М, необходимо установкой еще одного такого же обеспечить наибольшее снижение температуры в корпусе.

Сначала найдем расход в исходном корпусе, он равен 24 CFM (точка 1). Добавление переднего (точка 5) вентилятора прибавляет 5 CFM, а заднего (точка 4) 4 CFM. То есть передний вентилятор (редкий случай!) оказывается даже эффективнее заднего, но абсолютная прибавка все равно мизерна. Кстати, если передний вентилятор закрыт развитой декоративной решеткой (что скорее правило, чем исключение), из-за потерь напора в ней он скорее всего уступит заднему.

Теперь откроем слоты в корпусе. Без дополнительного вентилятора прибавка будет 11 CFM (это вдвое больше, чем при установке второго вентилятора в исходный корпус, точка 2), установка переднего вентилятора практически ничего не дает (точка 3), а установка заднего (точка 6) прибавит 22 CFM к исходному. Последний вариант дает самую большую прибавку, фактически удваивая исходный расход. Такая конфигурация оказывается чуть эффективнее и тише на 3 дБА, чем установка самого мощного 120-мм вентилятора «в гордом одиночестве». Возможности для дальнейшего улучшения вентиляции надо искать, как и в первом примере, на пути увеличения площади вентиляционных отверстий.

В заключение посмотрим, что дает любимое развлечение «самоделкиных» — врезка 120-мм вентилятора на вдув в боковую стенку. С точки зрения вентиляции это мероприятие имеет два последствия. Во-первых, добавляется новый последовательно включенный вентилятор, его характеристика (в сумме с имеющейся парой 9225М на выдув) показана на рис.3 коричневой штриховой линией. Во-вторых, в корпусе появляется новая дыра изрядного размера, и теперь корпус уже описывается на том же рисунке штриховой зеленой линией. На их пересечении (точка 10) находим расход- 75 CFM. Подставив это значение в формулу, получим падение температуры — 4-5 градусов. А если этот вентилятор выключить? Тогда мы перемещаемся в точку 9, расход падает на 10%, а температура в корпусе вырастет (о ужас!) аж на полградуса. Иными словами, эффект от дыры тут намного больше, чем от стоящего в ней вентилятора. Правда, вентилятор обычно дует на процессор, снабжая его свежим воздухом, поэтому повышение температуры процессора при выключении вентилятора будет более заметным. Однако для этой цели вполне хватит и самого слабого из 120-мм вентиляторов (особенно если снабдить его хотя бы коротким воздуховодом), свои уши тоже надо поберечь.

Ссылка на основную публикацию
Adblock
detector